Comparison of Instance Selection Algorithms II. Results and Comments
نویسندگان
چکیده
This paper is an continuation of the accompanying paper with the same main title. The first paper reviewed instance selection algorithms, here results of empirical comparison and comments are presented. Several test were performed mostly on benchmark data sets from the machine learning repository at UCI. Instance selection algorithms were tested with neural networks and machine learning algorithms.
منابع مشابه
Comparison of Portfolio Optimization for Investors at Different Levels of Investors' Risk Aversion in Tehran Stock Exchange with Meta-Heuristic Algorithms
The gaining returns in line with risks is always a major concern for market play-ers. This study compared the selection of stock portfolios based on the strategy of buying and retaining winning stocks and the purchase strategy based on the level of investment risks. In this study, the two-step optimization algorithms NSGA-II and SPEA-II were used to optimize the stock portfolios. In order to de...
متن کاملIFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملSelecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction
In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004