Comparison of Instance Selection Algorithms II. Results and Comments

نویسندگان

  • Marek Grochowski
  • Norbert Jankowski
چکیده

This paper is an continuation of the accompanying paper with the same main title. The first paper reviewed instance selection algorithms, here results of empirical comparison and comments are presented. Several test were performed mostly on benchmark data sets from the machine learning repository at UCI. Instance selection algorithms were tested with neural networks and machine learning algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Portfolio Optimization for Investors at Different Levels of Investors' Risk Aversion in Tehran Stock Exchange with Meta-Heuristic Algorithms

The gaining returns in line with risks is always a major concern for market play-ers. This study compared the selection of stock portfolios based on the strategy of buying and retaining winning stocks and the purchase strategy based on the level of investment risks. In this study, the two-step optimization algorithms NSGA-II and SPEA-II were used to optimize the stock portfolios. In order to de...

متن کامل

IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF

Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

Selecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction

In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004